0

人工智能到底是什么?

2024.11.01 | 念乡人 | 36次围观

  如果你一直以来把人工智能(AI)当做科幻小说,但是近来却不但听到很多正经人严肃的讨论这个问题,你可能也会困惑。这种困惑是有原因的:

人工智能到底是什么?

  1.我们总是把人工智能和电影想到一起。星球大战、终结者、2001:太空漫游等等。电影是虚构的,那些电影角色也是虚构的,所以我们总是觉得人工智能缺乏真实感。

  2.人工智能是个很宽泛的话题。从手机上的计算器到无人驾驶汽车,到未来可能改变世界的重大变革,人工智能可以用来描述很多东西,所以人们会有疑惑。

  3.我们日常生活中已经每天都在使用人工智能了,只是我们没意识到而已。John McCarthy,在1956年最早使用了人工智能(Artificial Intelligence)这个词。他总是抱怨“一旦一样东西用人工智能实现了,人们就不再叫它人工智能了。”

  因为这种效应,所以人工智能听起来总让人觉得是未来的神秘存在,而不是身边已经存在的现实。同时,这种效应也让人们觉得人工智能是一个从未被实现过的流行理念。Kurzweil提到经常有人说人工智能在80年代就被遗弃了,这种说法就好像“互联网已经在21世纪初互联网泡沫爆炸时死去了”一般滑稽。

  所以,让我们从头开始。

  首先,不要一提到人工智能就想着机器人。机器人只是人工智能的容器,机器人有时候是人形,有时候不是,但是人工智能自身只是机器人体内的电脑。人工智能是大脑的话,机器人就是身体——而且这个身体不一定是必需的。比如说Siri背后的软件和数据是人工智能,Siri说话的声音是这个人工智能的人格化体现,但是Siri本身并没有机器人这个组成部分。

  其次,你可能听过“奇点”或者“技术奇点”这种说法。这种说法在数学上用来描述类似渐进的情况,这种情况下通常的规律就不适用了。这种说法同样被用在物理上来描述无限小的高密度黑洞,同样是通常的规律不适用的情况。Kurzweil则把奇点定义为加速回报定律达到了极限,技术进步以近乎无限的速度发展,而奇点之后我们将在一个完全不同的世界生活的。但是当下的很多思考人工智能的人已经不再用奇点这个说法了,而且这种说法很容易把人弄混,所以本文也尽量少用。

  最后,人工智能的概念很宽,所以人工智能也分很多种,我们按照人工智能的实力将其分成三大类。

  弱人工智能Artificial Narrow Intelligence (ANI): 弱人工智能是擅长于单个方面的人工智能。比如有能战胜象棋世界冠军的人工智能,但是它只会下象棋,你要问它怎样更好地在硬盘上储存数据,它就不知道怎么回答你了。

  强人工智能Artificial General Intelligence (AGI): 人类级别的人工智能。强人工智能是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干。创造强人工智能比创造弱人工智能难得多,我们现在还做不到。Linda Gottfredson教授把智能定义为“一种宽泛的心理能力,能够进行思考、计划、解决问题、抽象思维、理解复杂理念、快速学习和从经验中学习等操作。”强人工智能在进行这些操作时应该和人类一样得心应手。

  超人工智能Artificial Superintelligence (ASI): 牛津哲学家,知名人工智能思想家Nick Bostrom把超级智能定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能。”超人工智能可以是各方面都比人类强一点,也可以是各方面都比人类强万亿倍的。超人工智能也正是为什么人工智能这个话题这么火热的缘故,同样也是为什么永生和灭绝这两个词会在本文中多次出现。

  现在,人类已经掌握了弱人工智能。其实弱人工智能无处不在,人工智能革命是从弱人工智能,通过强人工智能,最终到达超人工智能的旅途。这段旅途中人类可能会生还下来,可能不会,但是无论如何,世界将变得完全不一样。

  让我们来看看这个领域的思想家对于这个旅途是怎么看的,以及为什么人工智能革命可能比你想的要近得多。

  我们现在的位置——充满了弱人工智能的世界

  弱人工智能是在特定领域等同或者超过人类智能/效率的机器智能,一些常见的例子:

  现在的弱人工智能系统并不吓人。最糟糕的情况,无非是代码没写好,程序出故障,造成了单独的灾难,比如造成停电、核电站故障、金融市场崩盘等等。

  虽然现在的弱人工智能没有威胁我们生存的能力,我们还是要怀着警惕的观点看待正在变得更加庞大和复杂的弱人工智能的生态。每一个弱人工智能的创新,都在给通往强人工智能和超人工智能的旅途添砖加瓦。用Aaron Saenz的观点,现在的弱人工智能,就是地球早期软泥中的氨基酸——没有动静的物质,突然之间就组成了生命。

  弱人工智能到强人工智能之路

  为什么这条路很难走

  只有明白创造一个人类智能水平的电脑是多么不容易,才能让你真的理解人类的智能是多么不可思议。造摩天大楼、把人送入太空、明白宇宙大爆炸的细节——这些都比理解人类的大脑,并且创造个类似的东西要简单太多了。至今为止,人类的大脑是我们所知宇宙中最复杂的东西。

  而且创造强人工智能的难处,并不是你本能认为的那些。

  造一个能在瞬间算出十位数乘法的计算机——非常简单

  造一个能分辨出一个动物是猫还是狗的计算机——困难

  造一个能战胜世界象棋冠军的电脑——早就成功了

  造一个能够读懂六岁小朋友的图片书中的文字,并且了解那些词汇意思的电脑——谷歌花了几十亿美元在做,还没做出来。

  一些我们觉得困难的事情——微积分、金融市场策略、翻译等,对于电脑来说都太简单了

  我们觉得容易的事情——视觉、动态、移动、直觉——对电脑来说太难了。

  用计算机科学家Donald Knuth的说法,“人工智能已经在几乎所有需要思考的领域超过了人类,但是在那些人类和其它动物不需要思考就能完成的事情上,还差得很远。”

  读者应该能很快意识到,那些对我们来说很简单的事情,其实是很复杂的,它们看上去很简单,因为它们已经在动物进化的过程中经历了几亿年的优化了。当你举手拿一件东西的时候,你肩膀、手肘、手腕里的肌肉、肌腱和骨头,瞬间就进行了一组复杂的物理运作,这一切还配合着你的眼睛的运作,使得你的手能都在三维空间中进行直线运作。对你来说这一切轻而易举,因为在你脑中负责处理这些的“软件”已经很完美了。同样的,软件很难识别网站的验证码,不是因为软件太蠢,恰恰相反,是因为能够读懂验证码是件碉堡了的事情。

  同样的,大数相乘、下棋等等,对于生物来说是很新的技能,我们还没有几亿年的世界来进化这些能力,所以电脑很轻易的就击败了我们。试想一下,如果让你写一个程序,是一个能做大数相乘的程序容易写,还是能够识别千千万万种字体和笔迹下书写的英文字母的程序难写?

  而且,我们到现在谈的还是静态不变的信息。要想达到人类级别的智能,电脑必须要理解更高深的东西,比如微小的脸部表情变化,开心、放松、满足、满意、高兴这些类似情绪间的区别,  想想就很难吧?

  我们要怎样才能达到这样的水平呢?

  通往强人工智能的第一步:增加电脑处理速度

  要达到强人工智能,肯定要满足的就是电脑硬件的运算能力。如果一个人工智能要像人脑一般聪明,它至少要能达到人脑的运算能力。

  下面是最常见的三种策略:

  1、 抄袭人脑

  就好像你班上有一个学霸。你不知道为什么学霸那么聪明,为什么考试每次都满分。虽然你也很努力的学习,但是你就是考的没有学霸好。最后你决定“老子不干了,我直接抄他的考试答案好了。”这种“抄袭”是有道理的,我们想要建造一个超级复杂的电脑,但是我们有人脑这个范本可以参考呀。

  科学界正在努力逆向工程人脑,来理解生物进化是怎么造出这么个神奇的东西的,乐观的估计是我们在2030年之前能够完成这个任务。一旦这个成就达成,我们就能知道为什么人脑能够如此高效、快速的运行,并且能从中获得灵感来进行创新。一个电脑架构模拟人脑的例子就是人工神经网络。它是一个由晶体管作为“神经”组成的网络,晶体管和其它晶体管互相连接,有自己的输入、输出系统,而且什么都不知道——就像一个婴儿的大脑。接着它会通过做任务来自我学习,比如识别笔迹。最开始它的神经处理和猜测会是随机的,但是当它得到正确的回馈后,相关晶体管之间的连接就会被加强;如果它得到错误的回馈,连接就会变弱。经过一段时间的测试和回馈后,这个网络自身就会组成一个智能的神经路径,而处理这项任务的能力也得到了优化。人脑的学习是类似的过程,不过比这复杂一点,随着我们对大脑研究的深入,我们将会发现更好的组建神经连接的方法。

  更加极端的“抄袭”方式是“整脑模拟”。具体来说就是把人脑切成很薄的片,用软件来准确的组建一个3D模型,然后把这个模型装在强力的电脑上。如果能做成,这台电脑就能做所有人脑能做的事情——只要让它学习和吸收信息就好了。如果做这事情的工程师够厉害的话,他们模拟出来的人脑甚至会有原本人脑的人格和记忆,电脑模拟出的人脑就会像原本的人脑一样——这就是非常符合人类标准的强人工智能,然后我们就能把它改造成一个更加厉害的超人工智能了。

  我们离整脑模拟还有多远呢?至今为止,我们刚刚能够模拟1毫米长的扁虫的大脑,这个大脑含有302个神经元。人类的大脑有1000亿个神经元,听起来还差很远。但是要记住指数增长的威力——我们已经能模拟小虫子的大脑了,蚂蚁的大脑也不远了,接着就是老鼠的大脑,到那时模拟人类大脑就不是那么不现实的事情了。

  2、模仿生物演化

  抄学霸的答案当然是一种方法,但是如果学霸的答案太难抄了呢?那我们能不能学一下学霸备考的方法?

  首先我们很确定的知道,建造一个和人脑一样强大的电脑是可能的——我们的大脑就是证据。如果大脑太难完全模拟,那么我们可以模拟演化出大脑的过程。事实上,就算我们真的能完全模拟大脑,结果也就好像照抄鸟类翅膀的拍动来造飞机一样——很多时候最好的设计机器的方式并不是照抄生物设计。

  所以我们可不可以用模拟演化的方式来造强人工智能呢?这种方法叫作“基因算法”,它大概是这样的:建立一个反复运作的表现/评价过程,就好像生物通过生存这种方式来表现,并且以能否生养后代为评价一样。一组电脑将执行各种任务,最成功的将会“繁殖”,把各自的程序融合,产生新的电脑,而不成功的将会被剔除。经过多次的反复后。这个自然选择的过程将产生越来越强大的电脑。而这个方法的难点是建立一个自动化的评价和繁殖过程,使得整个流程能够自己运行。

  这个方法的缺点也是很明显的,演化需要经过几十亿年的时间,而我们却只想花几十年时间。

  但是比起自然演化来说,我们有很多优势。首先,自然演化是没有预知能力的,它是随机的——它产生的没用的变异比有用的变异多很多,但是人工模拟的演化可以控制过程,使其着重于有益的变化。其次,自然演化是没有目标的,自然演化出的智能也不是它目标,特定环境甚至对于更高的智能是不利的(因为高等智能消耗很多能源)。但是我们可以指挥演化的过程超更高智能的方向发展。再次,要产生智能,自然演化要先产生其它的附件,比如改良细胞产生能量的方法,但是我们完全可以用电力来代替这额外的负担。所以,人类主导的演化会比自然快很多很多,但是我们依然不清楚这些优势是否能使模拟演化成为可行的策略。

  3、让电脑来解决这些问题

  如果抄学霸的答案和模拟学霸备考的方法都走不通,那就干脆让考题自己解答自己吧。这种想法很无厘头,确实最有希望的一种。

  总的思路是我们建造一个能进行两项任务的电脑——研究人工智能和修改自己的代码。这样它就不只能改进自己的架构了,我们直接把电脑变成了电脑科学家,提高电脑的智能就变成了电脑自己的任务。

  以上这些都会很快发生

  硬件的快速发展和软件的创新是同时发生的,强人工智能可能比我们预期的更早降临,因为:

  指数级增长的开端可能像蜗牛漫步,但是后期会跑的非常快

  软件的发展可能看起来很缓慢,但是一次顿悟,就能永远改变进步的速度。就好像在人类还信奉地心说的时候,科学家们没法计算宇宙的运作方式,但是日心说的发现让一切变得容易很多。创造一个能自我改进的电脑来说,对我们来说还很远,但是可能一个无意的变动,就能让现在的系统变得强大千倍,从而开启朝人类级别智能的冲刺。

  强人工智能到超人工智能之路

  总有一天,我们会造出和人类智能相当的强人工智能电脑,然后人类和电脑就会平等快乐的生活在一起。

  即使是一个和人类智能完全一样,运算速度完全一样的强人工智能,也比人类有很多优势:

  硬件上:

  速度。脑神经元的运算速度最多是200赫兹,今天的微处理器就能以2G赫兹,也就是神经元1000万倍的速度运行,而这比我们达成强人工智能需要的硬件还差远了。大脑的内部信息传播速度是每秒120米,电脑的信息传播速度是光速,差了好几个数量级。

  容量和储存空间。人脑就那么大,后天没法把它变得更大,就算真的把它变得很大,每秒120米的信息传播速度也会成为巨大的瓶颈。电脑的物理大小可以非常随意,使得电脑能运用更多的硬件,更大的内存,长期有效的存储介质,不但容量大而且比人脑更准确。

  可靠性和持久性。电脑的存储不但更加准确,而且晶体管比神经元更加精确,也更不容易萎缩(真的坏了也很好修)。人脑还很容易疲劳,但是电脑可以24小时不停的以峰值速度运作。

  软件上来说:

  可编辑性,升级性,以及更多的可能性。和人脑不同,电脑软件可以进行更多的升级和修正,并且很容易做测试。电脑的升级可以加强人脑比较弱势的领域——人脑的视觉元件很发达,但是工程元件就挺弱的。而电脑不但能在视觉元件上匹敌人类,在工程元件上也一样可以加强和优化。

  集体能力。人类在集体智能上可以碾压所有的物种。从早期的语言和大型社区的形成,到文字和印刷的发明,再到互联网的普及。人类的集体智能是我们统治其它物种的重要原因之一。而电脑在这方面比我们要强的很多,一个运行特定程序的人工智能网络能够经常在全球范围内自我同步,这样一台电脑学到的东西会立刻被其它所有电脑学得。而且电脑集群可以共同执行同一个任务,因为异见、动力、自利这些人类特有的东西未必会出现在电脑身上。

  通过自我改进来达成强人工智能的人工智能,会把“人类水平的智能”当作一个重要的里程碑,但是也就仅此而已了。它不会停留在这个里程碑上的。考虑到强人工智能之于人脑的种种优势,人工智能只会在“人类水平”这个节点做短暂的停留,然后就会开始大踏步向超人类级别的智能走去。

  这一切发生的时候我们很可能被吓尿,因为从我们的角度来看 a)虽然动物的智能有区别,但是动物智能的共同特点是比人类低很多;b)我们眼中最聪明的人类要比最愚笨的人类要聪明很很很很多。

  所以,当人工智能开始朝人类级别智能靠近时,我们看到的是它逐渐变得更加智能,就好像一个动物一般。然后,它突然达到了最愚笨的人类的程度,我们到时也许会感慨:“看这个人工智能就跟个人类一样聪明,真可爱。”


  但问题是,从智能的大局来看,人和人的智能的差别,比如从最愚笨的人类到爱因斯坦的差距,其实是不大的。所以当人工智能达到了脑残级别的智能后,它会很快变得比爱因斯坦更加聪明。

版权声明

本文系作者授权念乡人发表,未经许可,不得转载。

标签列表