人工智能 (AI) 是致力于解决通常与人工智能相关联的认知性问题的计算机科学领域,这些问题包括学习、问题解决和模式识别等。提起人工智能 (通常缩写为“AI”),人们可能会想到机器人或未来的场景。但是,AI 不仅仅局限于科幻小说中的机器人,还迈进了现代非虚构的高级计算机科学领域。这一领域的杰出研究人员 Pedro Domingos 教授将机器学习划分为“五大学派”,即起源于逻辑和哲学的象征主义学派、源于神经系统科学的联结主义学派、与进化生物学相关的进化论学派、结合统计学和概率学的贝叶斯定理学派以及起源于心理学的类比推理学派。最近,由于统计计算效率的进步,贝叶斯定理学派在名为“机器学习”的领域取得了多个方面的进展。同样,由于网络计算的进步,联结主义学派在名为“深度学习”的一个子领域也取得了进展。机器学习 (ML) 和深度学习 (DL) 都属于源自人工智能学科的计算机科学领域。
从广义上来说,这些技术分为“有监督”和“无监督”学习技术,其中“有监督”使用包含预期输出的培训数据,而“无监督”使用不包含预期输出的培训数据。
数据越多,AI 就会“更加智能”,并以更快的速度学习;而且,企业每天都会生成数据,为运行机器学习和深度学习解决方案提供“燃料”,其中包括从 Amazon Redshift 等数据仓库收集和提取的数据、使用 Mechanical Turk 通过“人群”的强大力量收集的正确标注数据以及通过 Kinesis Streams 动态挖掘的数据。此外,随着 IoT 的出现和传感技术的应用,需要分析的数据量呈指数级增长,包括从之前几乎没有接触过的来源和位置以及对象和事件接收的数据。
“机器学习”这一名称通常应用于一些用于模式识别和学习的贝叶斯技术。从核心上讲,机器学习是各种算法的集合,这些算法可根据记录的数据进行学习和预测、在不确定情境下优化给定效用函数、从数据中提取隐藏结构并用简洁的描述对数据进行分类。在显式编程过于僵化或不切实际的情况下,通常会部署机器学习。与软件开发人员为尝试根据给定输入生成特定程序代码输出而开发的常规计算机代码不同,机器学习使用数据生成统计代码 (ML 模型),它将根据从先前的输入 (在使用监督技术的情况下还包括输出) 示例中识别出的模式输出“正确结果”。ML 模型的准确性主要取决于历史数据的质量和数量。
有了合适的数据,ML 模型就可以使用数十亿的示例来分析高维度问题,从而找到能够根据给定输入预测结果的最佳函数。ML 模型通常会在预测及其整体性能方面提供统计置信度。在您决定是使用 ML 模型还是任何个人预测时,此类评估得分非常重要。
Amazon.com 正在基于机器学习的系统上构建大量业务。如果没有 ML,Amazon.com 将无法拓展业务、改善客户体验和选择,也不能优化其物流速度和质量。Amazon.com 启动了亚马逊云科技,以便其他业务部门使用相同 IT 基础设施并享受其敏捷性和成本优势。现在,Amazon.com 继续将 ML 技术推广到每项业务。
Amazon.com 开发团队的结构和 ML 的核心任务 (即解决务实的疑难业务问题),推动着 Amazon.com 和亚马逊云科技去开发易于使用且功能强大的 ML 工具和服务。与其他 IT 服务类似,这些工具会先在 Amazon.com 的关键任务型环境中进行测试,然后才会作为亚马逊云科技服务发布,以供每个业务部门使用。
机器学习通常用于根据历史数据预测未来结果。例如,组织可使用机器学习来根据特定人口统计信息预测未来财政季度的产品销量,或预测哪类客户最有可能对您的品牌感到不满意,哪类客户对您的品牌最为忠诚。此类预测有助于您更好地制定业务决策,提供更加人性化的用户体验,还可能会降低客户保持成本。ML 可以根据过去的趋势和交易来预测未来结果,对侧重于报告过去业务数据的商业智能 (BI) 进行补充。
通过以下几个步骤,可成功在企业中实施 ML。首先,找出恰当的问题,即找出确定之后企业可从中获益的预测。接下来,必须根据历史业务指标 (交易、销量、流失等) 收集数据。对数据进行整合,然后根据数据构建 ML 模型。运行 ML 模型,并将模型的预测输出应用到企业系统,从而制定更加明智的决策。
深度学习是机器学习的一个分支,包含各种分层算法,目的在于更好地了解数据。与较为基础的回归算法不同,这些算法不再局限于创建一组可解释的关系。相反,深度学习依靠这些非线性算法层来创建能够根据一系列因素进行交互的分布式表示。对于大型培训数据集,深度学习算法开始能够识别元素之间的关系。这些关系可能存在于形状、颜色、文字等元素之间。由此,人们便可以使用该系统创建预测了。在机器学习和人工智能中,深度学习之所以具有强大的功能,是因为该系统能够识别的关系超出了人类可在软件中实际进行编码的关系,且还能识别出人类甚至无法意识到的关系。经过充分的培训后,算法网络便可以开始预测或解释非常复杂的数据。
版权声明
本文系作者授权念乡人发表,未经许可,不得转载。